Wednesday 15 February 2012

UPSC-CSE Main Exam Syllabus Physics Paper 1


PHYSICS
PAPER – I

1. (a) Mechanics of Particles:
Laws of motion; conservation of energy and momentum, applications to rotating frames, centripetal and Coriolis accelerations; Motion under a central force; Conservation of angular momentum, Kepler’s laws; Fields and potentials; Gravitational field and potential due to spherical bodies, Gauss and Poisson equations, gravitational self-energy; Two-body problem; Reduced mass; Rutherford scattering; Centre of mass and laboratory reference frames.

(b) Mechanics of Rigid Bodies:

System of particles; Centre of mass, angular momentum, equations of motion; Conservation theorems for energy, momentum and angular momentum; Elastic and inelastic collisions; Rigid body; Degrees of freedom, Euler’s theorem, angular velocity, angular momentum, moments of inertia, theorems of parallel and perpendicular axes, equation of motion for rotation; Molecular rotations (as rigid bodies); Di and tri-atomic molecules; Precessional motion; top, gyroscope.

(c) Mechanics of Continuous Media:

Elasticity, Hooke’s law and elastic constants of isotropic solids and their inter-relation; Streamline (Laminar) flow, viscosity, Poiseuille’s equation, Bernoulli’s equation, Stokes’ law and applications. 

(d) Special Relativity:

Michelson-Morley experiment and its implications; Lorentz transformations-length contraction, time dilation, addition of relativistic velocities, aberration and Doppler effect, mass-energy relation, simple applications to a decay process; Four dimensional momentum vector; Covariance of equations of physics.

2. Waves and Optics:

(a) Waves:

Simple harmonic motion, damped oscillation,  forced oscillation and resonance; Beats; Stationary waves in a string; Pulses and wave packets; Phase and group velocities;  Reflection and Refraction from Huygens’ principle.

(b) Geometrical Optics:

Laws of reflection and refraction from Fermat’s principle; Matrix method in paraxial optics-thin lens formula, nodal planes, system of two thin lenses, chromatic and spherical aberrations.

(c) Interference:

Interference of light-Young’s experiment, Newton’s rings, interference by thin films, Michelson interferometer; Multiple beam interference and Fabry-Perot interferometer.

(d) Diffraction:

Fraunhofer diffraction-single slit, double slit, diffraction grating, resolving power; Diffraction by a circular aperture and the Airy pattern; Fresnel diffraction: half-period zones and zone plates, circular aperture.

(e) Polarization and Modern Optics:

Production and detection of linearly and circularly polarized light; Double refraction, quarter wave plate; Optical activity; Principles of fibre optics, attenuation; Pulse dispersion in step index and parabolic index fibres; Material dispersion, single mode fibres; Lasers-Einstein A and B coefficients; Ruby and He-Ne lasers; Characteristics of laser light-spatial and temporal coherence; Focusing of laser beams; Three-level scheme for laser operation; Holography and simple applications.

3. Electricity and Magnetism:

(a) Electrostatics and Magnetostatics:
Laplace and Poisson equations in electrostatics and their applications; Energy of a system of charges, multipole expansion of scalar potential; Method of images and its applications; Potential and field due to a dipole, force and torque on a dipole in an external field; Dielectrics, polarization; Solutions to boundary-value problems-conducting and dielectric spheres in a uniform electric field; Magnetic shell, uniformly magnetized sphere; Ferromagnetic materials, hysteresis, energy loss.

(b) Current Electricity:

Kirchhoff’s laws and their applications; Biot-Savart law, Ampere’s law, Faraday’s law, Lenz’ law; Self-and mutual-inductances; Mean and r m s values in AC circuits; DC and AC circuits with R, L and C components; Series and parallel resonances;  Quality factor; Principle of transformer.


(c) Electromagnetic Waves and Blackbody Radiation:

Displacement current and Maxwell’s equations; Wave equations in vacuum, Poynting theorem; Vector and scalar potentials; Electromagnetic field tensor, covariance of Maxwell’s equations; Wave equations in isotropic dielectrics, reflection and refraction at the boundary of two dielectrics; Fresnel’s relations; Total internal reflection; Normal and anomalous dispersion; Rayleigh scattering; Blackbody radiation and Planck’s radiation law, Stefan- Boltzmann law, Wien’s displacement law and Rayleigh-Jeans’ law.

4. Thermal and Statistical Physics:

(a) Thermodynamics:

Laws of thermodynamics, reversible and irreversible processes, entropy; Isothermal, adiabatic, isobaric, isochoric processes and entropy changes; Otto and Diesel engines, Gibbs’ phase rule and chemical potential; van der Waals equation of state of a real gas, critical constants; Maxwell-Boltzman distribution of molecular velocities, transport phenomena, equipartition and virial theorems; Dulong-Petit, Einstein, and Debye’s theories of specific heat of solids; Maxwell relations and applications; Clausius- Clapeyron equation; Adiabatic demagnetisation, Joule-Kelvin effect and liquefaction of gases.

(b) Statistical Physics:

Macro and micro states, statistical distributions, Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac distributions, applications to specific heat of gases and blackbody radiation; Concept of negative temperatures.

No comments:

Post a Comment