Wednesday 27 March 2013

UPSC Exam-Indian Forest Service(IFoS) Exam 2013-Main Examination Syllabus-Chemistry-Paper 2


CHEMISTRY
Paper II
1. Delocalised covalent bonding: Aromaticity, anti-aromaticity; annulenes, azulenes, tropolones, kekulene, fulvenes, sydnones.

2(a) Reaction mechanisms : General methods (both kinetic and non-kinetic) of study of mechanism or organic reactions illustrated by examples–use of isotopes, cross-over experiment, intermediate trapping, stereochemistry; energy diagrams of simple organic reactions–transition states and intermediates; energy of activation; thermodynamic control and kinetic control of reactions
(b) Reactive intermediates : Generation, geometry, stability and reactions of carbonium and carbanium ions, carbanions, free radicals, carbenes, benzynes and niternes.
(c) Substitution reactions : SN1, SN2, SNi, SN1’, SN2’, SNi’ and SRN1 mechanisms; neighbouring group participation; electrophilic and nucleophilic reactions of aromatic compound including simple heterocyclic compounds–pyrrole, thiophene, indole.
(d) Elimination reactions : E1, E2 and E1cb mechanisms; orientation in E2 reactions– Saytzeff and Hoffmann; pyrolytic syn elimination–acetate pyrolysis, Chugaev and Cope eliminations.
(e) Addition reactions : Electrophilic addition to C=C and C=C; nucleophilic addition to C=O, C=N, conjugated olefins and carbonyls.
(f) Rearrangements : Pinacol-pinacolune, Hoffmann, Beckmann, Baeyer–Villiger, Favorskii, Fries, Claisen, Cope, Stevens and Wagner-Meerwein rearrangements

3. Pericyclic reactions : Classification and examples; Woodward-Hoffmann rules— clectrocyclic reactions, cycloaddition reactions [2+2 and 4+2] and sigmatropic shifts [1, 3; 3, 3 and 1, 5] FMO approach.

4. Chemistry and mechanism of reactions : Aldol condensation (including directed aldol condensation), Claisen condensation, Dieckmann, Perkin, Knoevenagel, Witting, Clemmensen, Wolff-Kishner, Cannizzaro and von Richter reactions; Stobbe, benzoin and acyloin condensations; Fischer indole synthesis, Skraup synthesis, Bischler- Napieralski, Sandmeyer, Reimer-Tiemann and Reformatsky reactions.

5. Polymeric Systems

(a) Physical chemistry of polymers : Polymer solutions and their thermodynamic
properties; number and weight average molecular weights of polymers. Determination
of molecular weights by sedimentation, light scattering, osmotic pressure, viscosity,
end group analysis methods.
(b) Preparation and properties of polymers : Organic polymers–polyethylene, polystyrene, polyvinyl chloride, Teflon, nylon, terylene, synthetic and natural rubber. Inorganic polymers–phosphonitrilic halides, borazines, silicones and silicates.
(c) Biopolymers : Basic bonding in proteins, DNA and RNA.
6. Synthetic uses of reagents : OsO4, HIO4, CrO3, Pb(OAc)4, SeO2, NBS, B2H6, Na-Liquid NH3, LiAlH4, NaBH4 n-BuLi, MCPBA.

7. Photochemistry : Photochemical reactions of simple organic compounds, excited and ground states, singlet and triplet states, Norrish-Type I and Type II reactions.

8. Principles of spectroscopy and applications in structure elucidation (a) Rotational spectra–diatomic molecules; isotopic substitution and rotational constants.
(b) Vibrational spectra–diatomic molecules, linear triatomic molecules, specific frequencies of functional groups in polyatomic molecules.
(c) Electronic spectra : Singlet and triplet states. N–>* and –>* transitions; application to conjugated double bonds and conjugated carbonyls–Woodward-Fieser rules.
(d) Nuclear magnetic resonance : Isochronous and anisochronous protons; chemical shift and coupling constants; Application of 1H NMR to simple organic molecules.
(e) Mass spectra : Parent peak, base peak, daugther peak, metastable peak, ragmentation of simple organic molecules;– cleavage, McLafferty rearrangement.
(f) Electron spin resonance : Inorganic complexes and free radicals.

No comments:

Post a Comment